Understanding Long-Term Finance Needs of Developing Countries

Manuel F Montes, South Centre

UNFCCC, Bonn, 9 July 2012

Main Messages

 Climate change financing needs of developing countries exceed by at least 5-10 times current and prospective flows

\$600 to \$1,500 billion a year vs \$100 b/year

 While there are a variety of estimates and approaches to estimating needs, there is a degree of convergence in the magnitudes among different studies

Mitigation –Estimates of Global Costs

 IEA (2010) "Blue Map" scenario up to 2030 \$750 billion a year 2030-2050 \$ 1,600 billion a year

Global Energy Assessment (2011)
 2010-2050 \$ 1,700-2,100 billion a year

Edenhofer et al. (2009) "RECIPE"
 up to 2030 \$480 – 600 billion a year
 in 2050 \$1,200 billion a year

Mckinsey (2009) Pathways to a Low-Carbon Economy

```
in 2020 $ 660 billion a year in 2030 $1,000 billion a year
```

Mitigation - 1

- UNFCCC (2009) expert group on technology
- Global additional financing required
 \$300 to 1,000 billion a year until 2030
- Developing country share in costs of technology deployment and diffusion (excl. research and development)

\$182 to 505 billion a year +more with R&D+

Mitigation - 2

- World Bank Development Report 2010
- Incremental mitigation costs in development countries

\$140 to 175 billion a year

"Associated financing needs"

\$265 to 565 billion a year

Mitigation - 3

- UNDESA (WESS 2011)
- Global investments for energy transformation \$1,800 billion a year
- Developing country requirements
 Energy transformation \$1,080 billion a year
 Agric. investment 20 billion a year

Total

\$1,100 billion a year

Mitigation – Bottom Up Estimates

- India (Centre for Science and Environment 2010)
 - 6 key sectors
 - \$10 billion a year for power sector alone
- China (Human Development Report 2009/10)

```
2010-2050 $ 240 - 355 billion a year pattern of increasing cost as economy grows
```

```
2030 269 269
```

2050 523 1,584

Adaptation - 1

- UNFCCC (2007) developing country needs
 \$27 to 66 billion a year
- World Bank (2010)
 \$75 to ~100 billion a year

```
of which in a $102 b a year "wetter" scenario

East Asia/Pacific - $29 b

South Asia - 17

Latin Am/Caribbean - 23

Sub-Saharan Africa - 19

Europe/Cent. Asia - 11

Middle East - 4 (rounding errors)
```

Adaptation – 2

- Parry et. al (Imperial College 2009) Peer reviewed Evaluation of UNFCCC estimates
 - (Parry former IPCC co-chair working group on impacts, vulnerabilities, and adaptation)
- missing important sectors ecosystem services, mining, manufacturing, energy, retail, finance, tourism
- underestimation by 2-3 times in each included sector
- Water (adapting to floods not included)
- Infrastructure low infrastructure levels to continue in Africa and LDCs
- Residual damage (Dlugolecki 2007)

Adaptation - 3

- More realistic estimate of adaptation costs Fuller cost: 2.5 times UNFCCC range \$68 – 165 billion a year \$165 Ecosystem services \$65 – 300 billion a year one half of maximum -150 Residual damage - \$200 billion a year 2/3 of maximum residual damage 133 **Total** 448 or approximately \$ 450 billion a year
- Still excluding mining, manufacturing, tourism, etc.

Adaptation – Indicators from Disasters

- Loss of life, homes, infrastructure, livelihoods
- BP Deepwater Horizon \$ 7.8 billion (excluding claims from public sector entities)
- Pakistan 2011 floods, 14 million affected,
 \$10-15 billion for reconstruction (MSNBC)
- Thailand 2011 floods, \$46 billion (WB 2011)
- US 2011 Mississippi flooding, \$9 billion (WSJ)

Mitigation & Adaptation

Developing Country Needs

- Mitigation \$500 to 1,100 billion a year
- Adaptation 100 to > 450 billion

Range 600 to >1,550 billion a year

Importance of Better Information

- Advantage of greater understanding among parties of the scale of estimates and assumptions behind them
- Importance of expanding support for bottomup approaches, such as the NEEDS study (UNFCCC 2010)

Methodology

- Greater precision with more detailed, sectoral studies but how to add up
- Many implicit, hard-to-measure, costs are ignored in overall estimates
 - Skills upgrading, local implementation capacity, etc.
 - Costs of adapting technology to local conditions
- Uncertainty in estimates of proportion of investment subject to climate change
- Many estimates are not independent of each other, partake of flaws in other studies

Thank you